The effects of morphine-induced increases in extracellular acetylcholine levels in the rostral ventrolateral medulla of rat.
نویسندگان
چکیده
The present study examined the role of the rostral ventrolateral medulla (RVLM) in the modulation of acetylcholine (ACh) release by morphine. We examined the effect of morphine on the release of ACh in the RVLM of freely moving rats using the in vivo microdialysis method. The basal level of ACh was 303.0 +/- 28.2 fmol/20 microliter/15 min in the presence of neostigmine (10 microM). Morphine at a low dose of 5 mg/kg (i.p.) increased ACh release by the RVLM by 42.4%. A higher morphine dose (10 mg/kg i.p.) significantly increased the release of ACh by 75.4%, with a maximal effect (86.4%) at 75 min. This enhancement following i.p. administration of morphine was reversed by naloxone (1 mg/kg i.p.). Addition of morphine (10(-4) M) to the perfusion medium increased the ACh release by 85.8% of the predrug values. The increased ACh release induced by local application of morphine was reversed by pretreatment with naloxone (1 mg/kg i.p.). The antinociceptive effect of locally applied morphine into the RVLM was assessed using the hot-plate test and tail immersion test in unanesthetized rats. Local application of morphine (10(-4) M) via a microdialysis probe induced an increase in both tail withdrawal and hot-plate response. These findings suggest that morphine seems to exert a direct stimulatory effect on ACh release by the RVLM and that morphine-induced nociception is, in part, activated by the release of ACh in freely moving rats.
منابع مشابه
Cardiovascular responses produced by resistin injected into paraventricular nucleus mediated by the glutamatergic and CRFergic transmissions within rostral ventrolateral medulla
Objective(s): Resistin, as a 12.5 kDa cysteine-rich polypeptide, is expressed in hypothalamus and regulates sympathetic nerve activity. It is associated with obesity, metabolic syndrome and cardiovascular diseases. In this study, we investigated the neural pathway of cardiovascular responses induced by injection of resistin into paraventricular nucleus (PVN) with rostr...
متن کاملGABAergic receptors in rostral ventrolateral medulla mediates the cardiovascular responses to activation of bed nucleus of the stria terminalis in the female rat
The bed nucleus of the stria terminalis (BST) is known to contain estrogen (E)- concentrating neurons. In addition, injections of E into BST have been reported to potentiate the sympathoinhibitory arterial pressure (AP) and heart rate (HR) responses elicited by glutamate (Glu) stimulation. In this study, the effect of GABA-A antagonist receptors, bicuculline methiodide (BMI), in the rostral ven...
متن کاملGABAergic receptors in rostral ventrolateral medulla mediates the cardiovascular responses to activation of bed nucleus of the stria terminalis in the female rat
The bed nucleus of the stria terminalis (BST) is known to contain estrogen (E)- concentrating neurons. In addition, injections of E into BST have been reported to potentiate the sympathoinhibitory arterial pressure (AP) and heart rate (HR) responses elicited by glutamate (Glu) stimulation. In this study, the effect of GABA-A antagonist receptors, bicuculline methiodide (BMI), in the rostral ven...
متن کاملGlutaminergic receptors in rostral ventrolateral medulla mediate the cardiovascular responses to activation of bed nucleus of the stria terminalis in female rats
The bed nucleus of the stria terminalis (BST) has been known to contain estrogen (E)-concentrating neurons. In addition, injections of E into BST have been reported to potentiate the sympathoinhibitory arterial pressure (AP) and heart rate (HR) responses elicited by glutamate (Glu) stimulation. In this study, the effect of glutamate antagonist receptors in the rostral ventrolateral medulla (RVL...
متن کاملGlutaminergic receptors in rostral ventrolateral medulla mediate the cardiovascular responses to activation of bed nucleus of the stria terminalis in female rats
The bed nucleus of the stria terminalis (BST) has been known to contain estrogen (E)-concentrating neurons. In addition, injections of E into BST have been reported to potentiate the sympathoinhibitory arterial pressure (AP) and heart rate (HR) responses elicited by glutamate (Glu) stimulation. In this study, the effect of glutamate antagonist receptors in the rostral ventrolateral medulla (RVL...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of pharmacology and experimental therapeutics
دوره 289 3 شماره
صفحات -
تاریخ انتشار 1999